
## **ОГЛАВЛЕНИЕ**

| СОКРАЩЕНИЯ5                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------|
| предисловие                                                                                                                |
| введение                                                                                                                   |
| Глава 1. ОСНОВЫ ОБЩЕЙ ЦИТОЛОГИИ11                                                                                          |
| 1.1. Патоморфологические основы метода                                                                                     |
|                                                                                                                            |
| 2.1. Эпителиальная ткань. 22   2.2. Соединительная ткань. 26   2.3. Мышечная ткань. 32   2.4. Нервная ткань. 33            |
| Глава 3. ЦИТОЛОГИЯ ОБЩЕПАТОЛОГИЧЕСКИХ ПРОЦЕССОВ36                                                                          |
| 3.1. Воспаление 36   3.2. Регенерация 41   3.3. Дистрофия 43   3.4. Дисплазия 44                                           |
| Глава 4. ОПУХОЛИ                                                                                                           |
| 4.1. Морфологическая атипия опухоли   .46     4.2. Классификация опухолей   .51     4.3. Лучевой патоморфоз опухолей   .52 |
| Глава 5. ТЕХНОЛОГИЯ И АЛГОРИТМ ВЫПОЛНЕНИЯ ЦИТОЛОГИЧЕСКОГО                                                                  |
| ИССЛЕДОВАНИЯ57                                                                                                             |
| 5.1. Методология цитологического исследования                                                                              |
| исследования                                                                                                               |
| 5.4. Маркировка, доставка и регистрация материала                                                                          |
| 5.5. Техника приготовления мазков                                                                                          |
| 5.6. Фиксация и окрашивание цитологических препаратов64                                                                    |
| 5.7. Правила и алгоритм микроскопии цитологического препарата64                                                            |
| 5.8. Оценка результатов и выдача цитологического заключения67                                                              |

Оглавление 3

| Глава 6. ЦЕРВИКАЛЬНАЯ ЦИТОЛОГИЯ                                     | 70  |
|---------------------------------------------------------------------|-----|
| 6.1. Морфофункциональная характеристика влагалища и шейки матки     | 70  |
| 6.2. Цитологический метод в диагностике заболеваний шейки матки     | 72  |
| 6.3. Состояние плоского эпителия слизистой оболочки шейки матки     |     |
| при физиологических процессах                                       | 79  |
| 6.4. Цитокольпоскопические сопоставления                            | 86  |
| 6.5. Цитологическая диагностика воспалительных процессов экзо-      |     |
| и эндоцервикса                                                      | 90  |
| 6.6. Доброкачественные изменения и заболевания шейки матки          | 96  |
| 6.7. Дисплазия, цервикальная интраэпителиальная неоплазия           | 106 |
| 6.8. Основные гистологические формы рака шейки матки                | 112 |
| 6.9. Классификации в цервикальной цитологии                         | 116 |
| 6.10. Цитологические исследования мазков с шейки матки для контроля |     |
| за проводимым лечением                                              |     |
| Глава 7. ПРОФИЛАКТИКА РАКА ШЕЙКИ МАТКИ                              | 122 |
| 7.1. Основные стратегии профилактики                                | 122 |
| 7.2. Актуальные вопросы скрининга в Российской Федерации            | 125 |
| 7.3. Методы цитологического скрининга                               | 129 |
| литература                                                          | 142 |

Оглавление



**Рис. 2.3.** Классификация желез в зависимости от типа секреции: (*A*) мерокринная железа; (*B*) апокринная железа; (*B*) голокринная железа

## 2.2. Соединительная ткань

Соединительная ткань — это комплекс клеток, волокон и основного вещества, которые объединяются общностью происхождения и выполняемых функций и представляют собой единое целое.

Универсальность определяется широким распространением соединительной ткани в организме: она образует строму внутренних органов, основу кожи, серозной и синовиальной оболочек, связки сухожилия, апоневрозы, оболочки мышц и нервов, участвует в образорании осухинстой стенки.

участвует в образовании сосудистой стенки. Главные компоненты соединительных тканей:

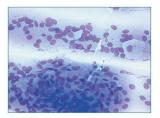
- волокнистые структуры коллагенового и эластического типов, которые продуцируют фибробласты;
- основное (аморфное) вещество, которое образуется, с одной стороны, путем секреции соединительнотканными клетками, а с другой — из плазмы крови, поступающей в межклеточные пространства;
- клеточные элементы (клетки фибробластического ряда, макрофаги, лаброциты, адвентициальные клетки, плазматические клетки, перициты, адипоциты).

Соединительная ткань, или система тканей внутренней среды, представляет собой

производное мезенхимы и выполняет опорную, трофическую и защитную функции. Условно выделяют три вида ткани:

В

- трофическую;
- опорную;
- опорно-трофическую.


К первому виду относят кровь и лимфу, ко второму — хрящи и кости; к третьему рыхлую соединительную ткань и плотную соединительную ткань, которую, в свою очередь, делят на оформленную (бухожилия, связки) и неоформленную. К опорно-трофической ткани относят также специальные виды: жировую, пигментную, ретикулярную.

## Трофические ткани

Кровь — своеобразная жидкая ткань (система крови), включающая форменные элементы (эритроциты, лейкоциты, тромбоциты) и плазму (жидкое межуточное вещество). У крови следующие функции:

- транспортная и трофическая (перенос кислорода и углекислого газа в процессе дыхания, питательных веществ из участков их всасывания и накопления к тканям; удаление из тканей продуктов метаболизма);
- гомеостатическая (поддержание постоянства внутренней среды);
- защитная (нейтрализация чужеродных антигенов; уничтожение и элиминация

26 Глава 2



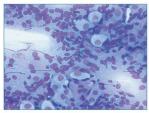
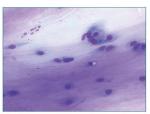
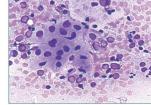
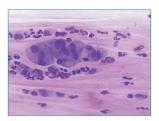






Рис. 6.9. Цитограмма возрастных изменений слизистой. Клетки плоского эпителия промежуточного слоя, разрушенные клетки в виде «голых» ядер, скудная микрофлора. Экзоцервикс. Окраска по Паппенгейму, х40





**Рис. 6.10.** Цитограмма возрастных изменений слизистой. Дегенеративно измененные клетки цилиндрического эпителия в тяжах слизи. Эндоцервикс. Окраска по Паппенгейму, ×40



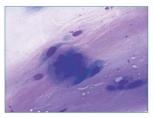



Рис. 6.11. Цитограмма возрастных изменений слизистой. Реакция стромы (нейтрофильные лейкоциты, многоядерные гистиоидные клетки). Эндоцервикс. Окраска по Паппенгейму, ×40

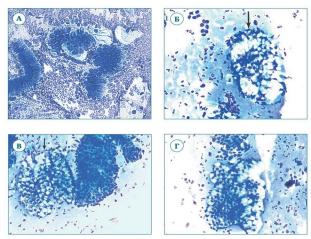
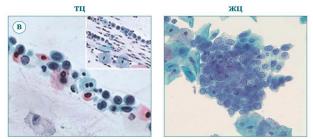




Рис. 6.35. Цитограмма соответствует пролиферации железистого эпителия. Клетки плоского эпителия промежуточного слоя, группы клеток пролиферирующего цилиндрического эпителия, метаплазированный эпителий по кишечному типу (стрелка). Эндограмис. Окраска по Паплентейму, х40



**Рис. 6.36.** Пролиферация цилиндрического эпителия с признаками атипии клеток (по терминологической системе Бетесда AGC-NOS). Эндоцервикс. Окраска по Паппенгейму, ×40



**Рис. 7.3 (окончание)**. Сравнительная морфология клеток при традиционной и жидкостной цитологии. Окраска по Папаниколау:

(B) HSIL. TЦ — при малом увеличении (вставка вверху справа), клетки HSIL в виде дорожки напоминают гистиоциты, эндоцервикальный метаплазированный эпителий. При большом увеличении они легко распознаются как HSIL.

ЖЦ (ThinPrep) — синцитиальная структура с напластовыванием гиперхромных ядер. При ЖЦ ядра нередко бывают не такими гиперхромными, как при ТЦ. Биопсия — HSIL (CIN III); TЦ — традиционная цитология

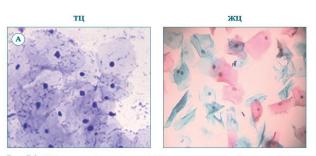
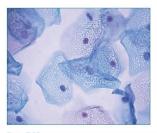




Рис. 7.4. (A) Поверхностный плоский эпителий. ТЦ — распределение клеток в виде пласта. Форма клеток полисильная, границы четкие, адерно-цитопламатическое соотношение примерно 1:10. ЖЦ — расположение клеток разрозненное. Форма, ядерно-цитоплазматическое соотношение трудно определяемые: ТЦ — товдиционная цитопогия



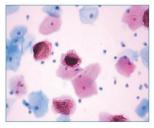



Рис. 7.10. Жидкостная цитология. Зерна кератогиалина в цитоплазме клеток поверхностного эпителия

Многими авторами не получено статистически значимой разницы при использовании этих двух методов. В то же время стоимость как ThinPrep-теста, так и компьютерной технологии еще очень высока. Кроме того, подобные технологии могут быть внедрены только в достаточно больших лабораториях, где просматривается не менее 200 000 мазков в год.

Поэтому рекомендуется улучшать технику приготовления мазков при рутинном методе, удаляя слизь и разрушенные остатки клеток, что позволяет достичь корреляции с гистологическим диагнозом в 96-100% случаев.

## Мониторинг после терапии CIN II-III

Показано, что положительный тест на ВПЧ может служить ранним и точным индикатором рецидива при контроле терапии СПО II-III и рака. Метаанализ недавних исследования показал, что чувствительность тестирования на ВПЧ для выявления неудач терапии составляет 67–100% (в среднем 94,4%), специфичность колеблется от 44 до 95% (в среднем 75%). В целом же диагностическая точность ВПЧ-геста для предсказания неудач терапии выше, чем у цитологического теста: ВПЧ-тест значительно превосходит цитологический тест по чувствительности и незначительно уступает ему в специфичности.

Во многих странах стандартный алгоритм наблюдения после лечения CIN II-III и РШМ включает ЦИ каждые полгода в течение первых двух лет и каждый год в течение последующих 5 лет. В Европейском руководстве по обеспечению качества цервикального скрининга предложен к рассмотрению алгоритм с одновременным применением цитологического теста и ВПЧ-теста. Предполагают, что тестирование будет более надежным, т. к. тест на ВПЧ обладает большей чувствительностью, чем цитологический метод, а выявление вируса после лечения ассоциировано с риском рецидива болезни. Кроме того, это позволит сократить количество визитов к врачу для женщин с отрицательными результатами обоих тестов.

Российский опыт использования ВПЧ-тестирования в постлечебном мониторинге после эксцизии подтвердил, что ВПЧ-тест через 6 мес. при чувствительности 100% и прогностической ценности отрицательного результата 100% сохранил хорошую специфичность (86%), чем значительно превысил аналогичные показатели Пап-теста, чувготвительность которого, по данным некото-

138