Оглавление

Предисловие редактора серии 18
Сокращения 20
Введение 21
Часть I. ОБЪЕКT
Глава 1. Общие сведения 27
Литература 32
Глава 2. Контроль и оценка качества 33
Качество 33
Контроль качества. 34
Оценка качества 34
Сравнительные характеристики контроля и оценки качества 35
Можно ли отнести 10%-й случайный пересмотр препаратов с отрицательными результатами Пап-теста к контролю качества? 35
Системное управление качеством 36
Анализ контроля и оценки качества 36
Литература 38
Глава 3. Сбор образцов 39
Негинекологические образцы 39
Свежие образцы выпотных жидкостей: подвергать их свертыванию или нет? 41
Гинекологические образцы 42
Предыстория 43
Традиционный Пап-тест 43
Жидкостный метод приготовления препаратов 44
Литература 49
Глава 4. Солевые растворы 52
Основные исторические вехи 52
Физиологический раствор 52
Сбалансированные электролитные растворы 55
Сбалансированные солевые растворы 56
Изотоничность и изоосмолярность 56
Литература 57
Глава 5. Приготовление препаратов 59
Основные исторические вехи 59
Предыстория 60
Сравнение гинекологических образцов с негинекологическими 60
Приготовление препаратов 60
Контроль и оценка качества 63
Традиционный («прямой») мазок 66
«Помощники» адгезии 67
Альбуминизированные стекла 68
Матированные стекла 68
Заряженные стекла 69
Почему клетки не прилипают к стеклу 70
Как сделать стекла смачиваемыми 70
Мазки, полученные из материала тонкоигольной аспирационной биопсии 72
Калибр тонких игл 74
Приготовление препаратов из негинекологических образцов ручным жидкостным методом 75
Метод гомогенизации мокроты Саккоманно 75
Материалы, необходимые для выполнения методики Саккоманно 76
Модифицированный метод Саккоманно 76
Приготовление препаратов из гинекологических образцов ручным жидкостным методом. 77
Автоматизированное жидкостное приготовление препаратов 77
Заключение 80
Приложение А. Применение сапонина для кровянистых клеточных суспензий 80
А1. Материалы 81
А2. Методика 81
АЗ. Результаты 82
А4. Обсуждение 82
Литература 82
Глава 6. Цитоцентрифугирование 86
Основные исторические вехи 86
Оценка объема образца 88
Не помещайте в камеру цитоцентрифуги образец, превосходящий ее по объему 90
Удержание клеток на стеклах 92
Заключение 93
Литература 93
Глава 7. Мембранная фильтрация 95
Основные исторические вехи 95
Материалы и методы 96
Материалы 97
Методы (проводятся в боксе биологической безопасности) 97
Результаты 100
Обсуждение 100
Литература 102
Глава 8. Фиксация 103
Основные исторические вехи 103
Иерархия материалов и методов фиксации 106
Заменители спирта 106
Высушивание защищенных фиксированных клеток на воздухе 107
Высушивание и регидратация незащищенных клеток 108
Консервация биоматериала 109
Собираем все детали воедино 110
Состав внутриклеточной жидкости 111
Расположение законсервированных и фиксированных клеток. 113
Длина углеродной цепи спирта 115
Концентрация спирта. 115
Сохранять ли препарат влажным или позволить ему высохнуть? 116
Расположение клеток при высушивании на воздухе 116
Используется ли Карбовакс при высушивании препарата на воздухе? 118
Гинекологические образцы и материал ТАБ 119
Негинекологические образцы 119
Общие наблюдения и обсуждение. 120
Заключение 122
Литература 124
Глава 9. Приготовление клеточных блоков 127
Основные исторические вехи 127
Методика с использованием тромбинового сгустка 128
Материалы 129
Методы 129
Альтернативные методы приготовления клеточного блока. 130
Увеличение количества клеток в блоке 132
Улучшение качества приготовления препарата 133
Улучшение консистенции 133
Клеточные блоки и иммуногистохимия 133
Обсуждение 134
Литература 135
Глава 10. Окраска по Папаниколау 137
Основные исторические вехи 137
Материалы и методы 141
Гематоксилин Гилла 142
OG, модифицированный Гиллом 142
ЕА, модифицированный Гиллом 144
Заменитель водопроводной воды Скотта 145
Особые указания 146
Результаты 151
Обсуждение 152
Гематоксилин 152
Дифференцировка при окрашивании гематоксилином 153
Отсинивание гематоксилина 154
Оранжевый $Ж$ 154
EA 155
Промывка 159
STAT-Pap: экспресс-окрашивание по Папаниколау 161
Материалы 161
Методы 162
Особые указания 162
Оценка качества с использованием буккальных мазков 163
Удаление красителя 167
Устранение ошибок 168
Литература 174
Глава 11. Контроль перекрестного загрязнения 176
Основные исторические вехи 176
Папаниколау о перекрестном загрязнении 177
CLIA '88 § 493.1274 «Стандарт: цитология» 178
Почему в CLIA '88 было обращено внимание на перекрестное загрязнение? 178
Материалы 181
Методы 183
Обсуждение 184
Флотирующие клетки действительно могут присутствовать 185
Заключение и рекомендации 188
Не делайте лишней работы 188
Необходимо делать только то, что нужно 188
Литература 189
Глава 12. Окраска гематоксилином и эозином 191
Основные исторические вехи 191
Гематоксилин 192
Эозин 192
Особые указания 195
Результаты 198
Заключение 198
Литература 199
Глава 13. Окраска по Романовскому 200
Основные исторические вехи 200
Преимущества окраски по Романовскому в рутинной клинической практике 202
Литература 208
Глава 14. Специальные красители и методы окрашивания 209
Классификация биологических красителей FDA и сертификация специальных красителей BSC 209
Специальные красители и окраски 214
Специальное окрашивание: ручные или автоматизированные протоколы 222
Заключение 223
Литература 223
Дополнительная литература 224
Часть II. ИЗОБРАЖЕНИЕ
Глава 15. Просветление 227
Основные исторические вехи 227
Альтернативы ксилолу. 228
Ксилол 229
«Вечный» ксилоп 230
Литература 234
Глава 16. Заключающие среды 236
Основные исторические вехи 236
Источник и вид смолы: химический синтез, искусственная смола. 240
Растворимость в ароматических углеводородах и концентрация, необходимая для достижения вязкости, соответствующей вязкости 60\% (масса/объем) раствора канадского бальзама в ксилоле 242
Растворы: тип растворителя, массовое соотношение растворителя и смолы 242
Скорость высыхания раствора: высокая, средняя, низкая (с указанием временньіх интервалов) 243
Устойчивость к аспирации воздуха 244
Показатель преломления заключающих растворов и твердой смолы с точностью до 3 знаков после запятой 245
Заключение. 250
Литература 250
Глава 17. Покровные стекла 252
Основные исторические вехи 252
Технические характеристики стандартного покровного стекла для микроскопии Королевского микроскопического общества 253
Стандартная спецификация E211 Американского общества по испытаниям и материалам 254
Устойчивость объективов к изменению толщины стандартного покровного стекла 0,17 мм 255
Влияние числовой апертуры на качество изображения 258
Толщина слоя заключающей среды 259
Единые цены 260
Размеры покровного стекла 261
Заключение 262
Литература 263
Глава 18. Заключение в среду 265
Основные исторические вехи 265
Нанесение покровных стекол на фильтры Millipore 266
Материалы для разделения 47-мм фильтров Millipore пополам 266
Методика 267
Результаты 269
Обсуждение 269
Коричневый артефакт (или «кукурузные хлопья») 269
Толщина слоя заключающей среды 273
Потеря массы при испарении растворителя из заключающей среды 273
Метод «готовки» препаратов уменьшает толщину слоя заключающей среды и ускоряет его затвердевание. 274
Литература 276
Глава 19. Освещение по Келеру 277
Очистка микроскопа 280
Что делать: советы 281
Что делать: техника очистки микроскопа 282
Окуляры 282
Верхняя линза конденсора 282
Объективы 282
Что делать: сроки очистки микроскопа. 283
Ежедневно 283
Еженедельно 283
По мере необходимости 283
Что не делать. 283
Практическая микроскопия (или «За работу, товарищи!») 284
Рабочее освещение по Келеру 284
«Световое представление» 284
Чистота идет рука об руку с качеством 284
Толщина препарата 285
Коррекция числовой апертуры восстанавливает качество изображения 285
Глубина резкости и фокусировки 286
Увеличение и укрупнение: показатель «×» 287
Фотомикрография и микрофотография 287
Глоток свежего воздуха 287
Литература 288
Часть III. ПРОЧЕЕ
Глава 20. Просмотр цитологических препаратов 291
SPADE - протокол просмотра препаратов в целях повышения диагностической эффективности 295
Предварительный просмотр 295
Исследование 297
Проверка 298
Объектив $4 \times$ 298
Маркировка чернильными точками 300
Перекрытие, выраженное в процентах 300
Просмотр препаратов с применением шаблона Гилла 304
Величина поля зрения окуляра 306
Зона видимости 308
Внимание и снижение внимания 309
Процесс просмотра препаратов: поиск и внимание, неправильное толкование и недооценка 312
Заключение 316
Литература 317
Глава 21. Классификация Бетесда-2001, CLIA '88 и анализ данных. 320
Основные исторические вехи 320
Клеточная адекватность 326
Определение процесса просмотра цитологических препаратов и отведенного на него времени 327
Расчет рабочей нагрузки. 328
Как лаборант может рассчитать рабочую нагрузку полуавтоматических средств цитологического наблюдения, утвержденных FDA для использования в гинекологии 329
Актуальные проблемы учета рабочей нагрузки и определения ее максимальных пределов 329
Как лаборант может рассчитать рабочую нагрузку полуавтоматических средств цитологического наблюдения, утвержденных FDA? 329
Пределы рабочей нагрузки 330
Сравнение ошибок одного цитотехнолога, выявленных при повторном просмотре, с результатами всей лаборатории 331
Доля ложноотрицательных результатов. 331
Вычисление доли ДЛО (расчетной) 334
Ускоренная проверка 100% результатов и замедленная проверка 10% результатов (т. е. проверка 10% результатов по материалам CLIA '88) 337
Заключение 337
Литература 338
Приложение А. Примечания к терминологии 341
Литература 344
Приложение В. Арифметика в цитологических лабораториях 345
Процентная концентрация 346
Наиболее распространенные примеры выражения относительной концентрации 346
Спирты 347
Биологические красители 347
Молярность (молярная концентрация) 348
Нормальность раствора 348
Замечания по безопасности при обращении с кислотой 349
Перевод единиц температуры 350
Центробежная сила 350
Формальдегид vs формалин 352
Приложение С. Стандарты безопасности 353
Основные исторические вехи 353
Литература 354
Приложение D. Метод переноса клеточного материала 355
Цель и функция 355
Материалы 355
Метод 355
Литература 357
Приложение Е. Информация для заказа 358
Приложение F. Использование термина «хроматин» 360
Литература 361
Приложение G. Полезные URL-адреса 362
Приложение Н. Избранные исторические вехи в развитии микротехники 366
Литература 368
Приложение I. Просмотр цитологических препаратов и CPR. 369
Литература 372
Приложение Ј. Награды и публикации автора 373
Примечания 373
Награды и премии 373
Публикации (269) 373
Монографии 374
Главы из монографий 374
Рецензирование статей 375
Рефераты 377
Статьи 378
Письма редактору 382
Печатные материалы поставщиков оборудования 383

Рис. 5.6. Поместите $2-4$ капли аспирата на центр маркированного стекла и затем накройте вторым, заранее промаркированным стеклом. При соприкосновении стекол аспират распределится по их поверхностям, и они соединятся под действием естественных адгезивных свойств аспирата (аспират распределяется и стягивает стекла за счет сил поверхностного натяжения. - Прим. ред.). Дождитесь момента, когда образец практически прекратит распределяться между стеклами, и тогда потяните их в разные стороны, сохраняя контакт между ними. Таким образом, мазок на каждом стекле будет иметь характерную форму арки. Поместите 1 стекло в спирт, а другое высушите на воздухе

Рис. 5.7. Два зеркально отражающих друг друга мазка, приготовленных за один прием: один зафиксируйте в спирте, а другой высушите на воздухе

Рис. 8.7. Содержание воды в клетках определяет, будут ли они сморщиваться или набухать при различных условиях фиксации. К клеткам с низким содержанием воды относятся клетки плоского эпителия промежуточного и поверхностного слоев, а также клетки ороговевающего плоскоклеточного рака. Во всех остальных клетках содержится большое количество жидкости, именно они являются наиболее чувствительными по отношению к различным методам фиксации

Содержание воды в клетках	Законсервированные в 50% этаноле	Прошедшие влажную фиксацию в 95\% этаноле	Высушенные на воздухе
НИЗКОЕ: Клетки плоского эпителия промежуточного слоя Диапазон d=1,58× Диапазон $\mathrm{A}=2,48 \times$	$\begin{aligned} & d=67 \text { мкм }(0,97 x) \\ & A=3562 \text { мкм }^{2} \end{aligned}$	$\begin{aligned} & \mathrm{d}=69 \text { MKM }(1 \times) \\ & \mathrm{A}=3739 \text { MKM }^{2} \end{aligned}$	$\begin{aligned} & \mathrm{d}=106 \text { мкм }(1,54 \times) \\ & \mathrm{A}=8825 \text { мкм }^{2} \end{aligned}$
BЫICOKOE: Клетки мезотелия Диапазон d $=2,33 \times$ Диапазон $A=5,45 \times$	$\begin{aligned} & d=21 \text { мкм }(0,64 \times) \\ & A=346 \text { мкм }^{2} \end{aligned}$	$\begin{aligned} & \mathrm{d}=33 \text { мкм }(1 \times) \\ & \mathrm{A}=855 \text { мкм }^{2} \end{aligned}$	$\begin{aligned} & d=49 \text { мкм }(1,48 \times) \\ & \mathrm{A}=1886 \text { мкм }^{2} \end{aligned}$

Рис. 8.8. Метод влажной фиксации против высушивания на воздухе. Свежие клетки (без консервации), прошедшие влажную фиксацию, являются стандартом, относительно которого рассматриваются все альтернативные методы и материалы. Любые расхождения со стандартным протоколом ведут к ухудшению визуальных характеристик хроматина, а значит, к меньшей информативности препарата. ${ }^{23}$ Приводится по Кирби. ${ }^{24}$ d - диаметр; A - площадь

Рис. $6.1(a-b)$. На этих микрофотографиях отчетливо видно, как уплощаются клетки под действием центробежной силы. На скорости 1500 об./мин. Cytospin 4 развивает центробежную силу 231 g . Радиус ротора (расстояние от центра до вертикально ориентированной поверхности предметного стекла во время центрифугирования) составляет 9,2 см

Рис. 7.1. Клетки рака мочевого пузыря на фильтре Millipore. Окраска по Папаниколау. Исходное увеличение 400

Рис. 7.3. ($a-b$) Клетки злокачественной опухоли на фильтрах Millipore. (a) Клетки овсяноклеточного рака легкого в образце мокроты. В препаратах любого образца, приготовленных с помощью фильтров Millipore, клетки выглядят более крупными, хроматин детально просматривается. Наши исследования позволили нам понять некоторые тонкости приготовления цитологических препаратов и улучшить их качество с помощью небольшой модификации

Рис. 8.3. За исключением клеток, фиксированных в фирменной спиртовой смеси (d), все клетки взяты из образца плевральной жидкости: (a) 95% этанол, (b) спиртовой реагент, (c) абсолютный метанол, (d) фирменная спиртовая смесь, (e) абсолютный изопропанол (АИП) и (f) 90% ацетон. Фирменная спиртовая смесь представляет собой смесь 100 частей спирта и по 1 части этилацетата, метилизобутилкетона и авиационного бензина. В случаях $a-d$ получается сходная морфологическая картина, в (e) и (f) (АИП и ацетон) она отличается. Как показано на (e), фиксация в АИП вызывает чрезмерное сморщивание клеток. Если разбавить АИП до концентрации 80%, эффект сморщивания уменьшится и его можно будет применять в качестве фиксатора. Ацетон также считают подходящим вариантом, хотя с практической точки зрения его летучесть и резкий запах делают его использование менее удобным. Все шесть фиксаторов огнеопасны и должны использоваться в соответствии с правилами противопожарной безопасности

Рис. 8.13. Негинекологические цитологические образцы не всегда нужно консервировать. Это две микрофотографии клеток злокачественной опухоли из одного образца плевральной жидкости, собранного в гепаринизованный контейнер и приготовленного с помощью фильтрации на Millipore. (a) Приготовлен в день получения материала (в понедельник). (b) Хранился в холодильнике 4 дня, приготовлен в пятницу. На второй фотографии видны просветления в хроматине, связанные с дегенерацией; на фильтре значительно большее количество мелких пятнышек. Тем не менее препарат все еще пригоден для диагностики. Отсрочка в приготовлении препарата была намеренной, чтобы показать, что образцы долго могут сохранять свежесть (как минимум в течение нескольких часов), особенно если хранятся в холодильнике и смешивание с консервирующей жидкостью необязательно. Как известно, в выпотных жидкостях содержится белок, защищающий клетки от разрушения

Рис. 10.1. Пять красителей, предусмотренных методикой окрашивания по Папаниколау, входят в состав трех растворов. Гематоксилин и оранжевый Ж находятся каждый в отдельном растворе; третий раствор - ЕА - содержит бисмарк коричневый Ж, светло-зеленый SF и эозин Ж. Я обычно использовал водные маточные растворы в мерных колбах для регулирования молярной концентрации цитоплазматических красителей

